Les articles de blog sur la régulation du débit les plus populaires en 2019

Quel article de notre blog a été le plus amusant, le plus utile, le plus captivant ou le plus intéressant en 2019 ? Lynn nous dévoile le top 5 des articles les plus populaires.

Lynn Woerts
Cover Image

Quelques jours après le début de la nouvelle année, les projets et objectifs pour cette année commencent à prendre forme. Dans cette optique, il est temps de faire un bref bilan de l’année dernière. Par exemple, quels objectifs avons-nous atteints ? Quel article de blog a été le plus amusant, le plus utile, le plus captivant ou le plus intéressant pour vous ? D’ailleurs, soyez assurés que nous partagerons avec vous tout ce que nous savons sur les faibles débits, le débit massique et les débitmètres encore plus souvent au cours de la nouvelle année. D’après les données présentées dans les statistiques de 2019, nous avons compilé un top 5 des articles de blog les plus populaires. Les gagnants sont :

  1. Que faire en cas de vibrations lors de l’utilisation de débitmètres massiques Coriolis ?
  2. Savez-vous pourquoi les conditions de référence de débit massique sont importantes ?
  3. Compensation de la pression et de la température en temps réel pour optimiser la régulation du débit.
  4. Précision et répétabilité d’un débitmètre.
  5. La vanne de régulation de débit, l’accessoire le plus utilisé dans la régulation de débit

Top 5 des articles de blog les plus populaires en 2019 :

1. Que faire en cas de vibrations lors de l’utilisation de débitmètres massiques Coriolis ?

Vibration et débitmètre Coriolis

Instrument connu pour sa grande précision, le débitmètre massique Coriolis présente de nombreux avantages. Il n’est donc pas étonnant que cet article de blog ait atteint la première place. Dans les applications industrielles, toutes sortes de vibrations avec différentes amplitudes sont très courantes. Toutefois, la question est de savoir si ces vibrations ont une influence sur la précision de mesure d’un débitmètre massique Coriolis. Ferdinand Luimes, responsable de produits pour les technologies de débit de liquides, parle des avantages et des inconvénients de ces débitmètres et donne quelques conseils pratiques pour utiliser ces instruments.

2. Savez-vous pourquoi les conditions de référence pression/température des unités de mesure de débit massique sont importantes ?

Différence entre conditions standard et normales

Le monde de la mesure de débit applique des conditions de référence, qui peuvent être divisées en conditions standards et en conditions normales. Il existe également une distinction entre le style européen et le style américain. Chris King, Directeur général de Bronkhorst USA, nous éclaire sur cette construction apparemment compliquée dans son article de blog, en détaillant exactement les différences et en expliquant pourquoi ces conditions de référence sont importantes.

3. Compensation de la pression et de la température en temps réel pour optimiser la régulation du débit

Régulateur de débit insensible aux variations de pression

Cet article de blog a eu le plus grand succès en 2018 et est toujours dans le top 5 aujourd’hui, prouvant une fois de plus la pertinence de ce sujet. Il s’avère que divers facteurs externes peuvent avoir une influence sur la précision de mesure et la stabilité de régulation des régulateurs de débit massique. Vincent Hengeveld, responsable de produits pour le débit de gaz, explique le principe de la compensation de la pression et de la température en temps réel.

4. Justesse et répétabilité d’un débitmètre

Débitmètre-répétabilité et justesse de mesure

Choisir le bon débitmètre adapté à votre application est un élément essentiel pour la réussite du projet. En général, les deux caratéristiques clés sont la justesse et la répétabilité du débitmètre. Dans son article de blog, Chris King explique ce que ces deux paramètres signifient et pourquoi ils sont d’une importance fondamentale.

5. La vanne de régulation : l’outil le plus utilisé dans la régulation de débit

Vanne de régulation

Pour terminer la liste, un article de blog sur les vannes de régulation, probablement l’outil le plus utilisé dans la régulation de débit. Utilisée pour réguler un débit, une vanne de régulation fait varier la capacité de passage de débit. Savez-vous quelle vanne est la plus appropriée pour votre débitmètre ? Stefan von Kann, ingénieur expert en physique appliquée, présente un certain nombre de conseils et d’astuces sur les points les plus importants.

Les blogueurs invités en 2019

Nous tenons à remercier vivement nos blogueurs invités pour leurs études fascinantes et leurs histoires captivantes. Nous sommes ravis que vous ayez contribué au contenu de notre site en 2019.

  • Roland Snijder, physicien médical au centre Hospitalier de Haaglanden Medisch (Pays-Bas), a travaillé comme chercheur sur le projet de multi-perfusions au service de Technologie médicale et de physique clinique du Centre médical universitaire d’Utrecht. Dans son article de blog, il se concentre sur l’étude des causes physiques des erreurs de dosage dans les systèmes de multi-perfusions.
  • Jean-François Lamonier (Université de Lille) est un expert dans le traitement catalytique des composés organiques volatils. Dans cet article de blog, il explique comment son équipe utilise des débitmètres à cet effet.
  • Jornt Spit, chercheur au sein du groupe de recherche Radius à l’Université des Sciences Appliquées Thomas More en Belgique, a une formation en biochimie et en biotechnologie. Il travaille sur la biomasse renouvelable. Lisez son article de blog sur l’apport de CO2 contrôlé pour l’algoculture et sa précieuse contribution en tant que source alternative de carbone.
  • La Prof. Michaela Aufderheide (Cultex Technology GmbH) travaille depuis plus de 30 ans dans le domaine des méthodes analytiques alternatives à base de cellules vivantes, notamment sur la toxicologie par inhalation. La pollution croissante de l’air ambiant extérieur et du lieu de travail rend nécessaire de nouvelles méthodes d’essai. Lisez son article de blog : « La cigarette électronique – Bonne ou mauvaise ? »

Vous cherchez encore plus d’inspiration ? Tous les articles de blog sont accessibles sur notre site.

Au nom de toute l’équipe Bronkhorst, je vous souhaite une année 2020 saine, merveilleuse et innovante !

PS : Quels sujets d’articles aimeriez-vous que nous écrivions sur notre blog en 2020 ? Partagez avec nous vos idées !

Comment les débitmètres sont-ils utilisés dans le traitement catalytique des composés organiques volatils (COV) ?

Comment les débitmètres sont-ils utilisés dans le traitement catalytique des polluants atmosphériques émis par les sources fixes et mobiles?

Jean-François LAMONIER
Cover Image

Enseignant-chercheur à l’Université de Lille, Jean-François Lamonier s’intéresse au traitement catalytique des Composés Organiques Volatils (COV). Il est responsable de l’équipe de recherche « Remédiation et Matériaux Catalytiques » (REMCAT) de l’Unité de Catalyse et Chimie du Solide (UCCS), équipe spécialisée dans la dépollution catalytique de polluants atmosphériques issus de sources fixes (industries) et mobiles (véhicules). Dans cet article de blog, il nous présente ses activités de recherches et nous explique la fonction des instruments de mesure et de régulation de débit dans ses applications.

Les axes de recherches de l’équipe REMCAT

L'Equipe de recherche REMCAT (Remédiation et Matériaux Catalytiques) de l'Unité de Catalyse et Chimie du Solide (UCCS)

L’équipe REMCAT est composée de 6 enseignant-chercheurs et son activité est focalisée sur le post-traitement catalytique de polluants atmosphériques, principalement les oxydes d’azote (NOx et N2O) et les Composés Organiques Volatils (COV). Notre équipe intègre de nombreux savoir-faire en catalyse hétérogène : de la synthèse des catalyseurs à la caractérisation de nouvelles formulations catalytiques, l’évaluation de leurs performances au travers de tests catalytiques poussés, la caractérisation avancée des catalyseurs par spectroscopie infrarouge operando, la cinétique des réactions et la modélisation des réacteurs.

Traitement efficace de la pollution de l'air par la combinaison du plasma non thermique avec la catalyse

Cet ensemble de compétences en catalyse environnementale nous permet de développer des procédés originaux consistant à coupler différentes technologies pour un traitement de la pollution atmosphérique plus efficace, moins coûteux et plus soucieux de l’environnement. Dans ce cadre nous collaborons avec différents groupes de recherche nationaux et internationaux, et notamment avec le « Research Group Plasma Technology » de l’Université de Gand. Ce groupe de recherche est spécialisé dans le développement de réacteur plasma et nous apportons nos compétences en catalyse hétérogène pour développer ensemble des procédés qui couplent le plasma non thermique avec la catalyse. Ce travail de recherche se réalise au sein d’un Laboratoire Associé International « Plasma-Catalyse » que nous avons récemment créé et le projet Européen INTERREG V « DepollutAir » qui finance actuellement notre recherche.

L'utilisation d'une fonctionnalité d'adsorption dans le procédé de transformation par plasma - Catalyse

Les procédés classiques par plasma-catalyse pour l’élimination des Composés Organiques Volatils (COV), présents dans les effluents gazeux industriels, nécessitent un apport énergétique constant. Notre démarche consiste à intégrer une fonctionnalité d’adsorption préalable du polluant dans le procédé de transformation par plasma-catalyse. Ceci permet un fonctionnement en mode séquentiel du plasma pour l’élimination de Composés Organiques Volatils et la régénération de l’adsorbant et donc une économie d’énergie substantielle. Notre équipe apporte ses compétences dans l’élaboration de nouveaux matériaux adsorbant/catalyseur et dans la caractérisation avancée de ces matériaux.

Les débitmètres et régulateurs de débit dans les applications de traitement catalytique des Composés Organiques Volatils (COV) Dans le cadre de nos recherches, nous devons générer des mélanges de COV pour simuler les effluents gazeux industriels. Comme ces effluents gazeux diffèrent selon le type d’industrie et que nous devons être le plus représentatif possible des réalités industrielles, il faut être en mesure de générer un flux gazeux avec des teneurs en COV très variables et avec des COV de nature très différente tels que le formaldéhyde, le toluène, le chlorobenzène, le trichloroéthylène et le butanol.

Schéma dilution

Système de dilution avec un débitmètre Coriolis

Pour cela, nous utilisons un système de dilution fourni par Bronkhorst qui intègre un débitmètre Coriolis, un régulateur de pression (déverseur) et plusieurs régulateurs de débit massique. Nous avions besoin d’un équipement permettant d’atteindre des faibles concentrations de COV car les normes de plus en plus restrictives conduisent à une diminution de la teneur des COV à l’émission dans l’atmosphère. Il fallait également que le système soit le plus flexible possible pour s’adapter à la fois à la nature des divers liquides injectés dans le système et transformés en gaz et aux teneurs en COV dans l’effluent gazeux pouvant varier de 10 à 1000 ppmv.

Formulations catalytiques

L'humidité relative des effluents gazeux est un paramètre important à prendre en considération pour le développement des formulations catalytiques. En effet la présence de vapeur d’eau peut avoir un effet positif ou négatif sur la performance du procédé catalytique. Par conséquent, le système de génération de gaz devait aussi permettre de générer une humidité relative variable dans le mélange gazeux .

Solution de dilution Bronkhorst

De plus pour proposer une formulation catalytique adaptée à l’industriel, il faut non seulement vérifier que le catalyseur soit bien actif et sélectif (c’est-à-dire que le catalyseur doit donner les produits désirés) mais également qu’il soit stable dans le temps. En effet, il est difficile d’imaginer un catalyseur qui ne fonctionne qu’une seule journée et devoir le remplacer le lendemain. C’est pour cela que nous avons besoin de reproduire un effluent gazeux industriel constant sur plusieurs jours. Lorsqu’un test catalytique est effectué sur une journée, nous pouvons envisager d’utiliser un bulleur. En revanche, quand nous avons besoin de vérifier la stabilité des catalyseurs dans le temps, nous effectuons des tests de longue durée pour voir si le catalyseur est capable de garder son activité sur plusieurs jours. Ce serait plus compliqué de faire des tests dans la durée avec un système classique alors que le système de Bronkhorst permet de générer un flux constant, continu et sans à-coups de COV dans l’air. C’est un plus indéniable pour valider notre process.

Système DilLab

Retrouvez plus d’informations sur les travaux de recherches de Jean-François Lamonier et de l’équipe REMCAT de l’Unité de Catalyse et Chimie du Solide : activités de recherches

Université de Lille

Pour être informé de nos nouveautés et nos derniers articles de blog, pensez à la newsletter.

Quel rôle jouent les débitmètres dans la transformation des betteraves à sucre ?

Quel rôle jouent les débitmètres Coriolis dans la transformation de la betterave à sucre ?

Erwin Broekman
Cover Image

Pourquoi aimons-nous tous (du moins la plupart d’entre nous) les bonbons, le soda, les biscuits et les gâteaux ? Tous ces produits contiennent du sucre qui leur donne un très bon goût. Mais d’où vient ce sucre ? Toutes les plantes vertes produisent du sucre par photosynthèse. De tous les végétaux, la betterave à sucre et la canne à sucre sont ceux qui contiennent les plus grandes quantités de sucre, c’est la raison pour laquelle nous utilisons généralement ces deux plantes pour extraire du sucre. Dans cet article de blog, nous nous concentrons sur la transformation des betteraves à sucre et sur le rôle que jouent les débitmètres Bronkhorst dans ce procédé.

La société Convergence Industry B.V. fournit des systèmes de mesure et de régulation sur mesure pour les liquides et les gaz. Dans le procédé d’obtention de sucre à partir de betteraves à sucre, l’un des clients de Convergence a découvert qu’en utilisant la filtration membranaire, il était possible d’extraire de la betterave à sucre plus de composants que le sucre seul. Un système de laboratoire dédié pour la nanofiltration a été utilisé à cet effet.

Filtration membranaire

La filtration membranaire est un procédé de purification de haute qualité utilisant des techniques sophistiquées. Comment ça marche ? Une explication simple de la filtration membranaire consiste à la comparer à la préparation d’un café. Si vous versez de l’eau dans un filtre à café rempli de grains de café, vous voulez avoir comme résultat le café sans l’enveloppe du grain de café. C’est à cela que sert le filtre. À un autre niveau, ceci est similaire à la filtration d’eau par laquelle vous voulez filtrer les ions afin de pouvoir fabriquer de l’eau potable à partir de l’eau de mer. C’est aussi simple que cela !

Collaboration avec Convergence pour la filtration membranaire

Pour la filtration membranaire, un système « Convergence inspector Colossus » peut être utilisé. Il s’agit d’un équipement de laboratoire dédié totalement automatisé pour la nanofiltration, ce qui le rend attrayant pour les utilisateurs. Felix Broens (Directeur de la technologie de Convergence Industry B.V.) explique comment ce système fonctionne :

"Le système de nanofiltration est alimenté par de l'eau dans laquelle est dosé un agent antitartre exempt de phosphate. Le système est mis sous pression à l’aide d’une pompe haute pression, ce qui conduit une partie de l’eau à traverser la membrane (perméat). La partie de l'eau qui ne peut pas traverser la membrane (rétentat) est redirigée vers l’endroit d’où provient l’eau. Une seconde pompe dans le conduit de recirculation provoque une vitesse supérieure à travers la surface de la membrane, ce qui réduit la pollution sur la membrane même. Le perméat peut être éventuellement utilisé en tant qu’eau propre pour différentes applications."

"L’agent antitartre est utilisé pour prévenir l’entartrage de la membrane, en formant un complexe d’ions contenant des métaux, ce qui les maintient dans le flux de rétentat afin qu’ils puissent être évacués du système. Du fait de l’utilisation d’un agent antitartre exempt de phosphate et biodégradable, ceci n’a aucun effet nocif sur l’environnement."

Système de filtration membranaire et débitmètre Coriolis - Convergence

Les débitmètres Bronkhorst dans la filtration membranaire

Le cœur du système de nanofiltration est constitué par un débitmètre massique Coriolis de Bronkhorst, permettant de réguler le procédé. Un débitmètre Coriolis est utilisé, car celui-ci mesure également la densité, ce qui est important dans le cas de solutions sucrées. Le débitmètre est placé du côté « propre » du procédé, donc derrière la membrane où s’effectue l’écoulement de perméat (l’écoulement de produit purifié). Le degré de séparation de la membrane peut être influencé à la fois par le débit et par la pression. Et donc, un débitmètre Coriolis avec un large spectre constitue la meilleure option pour couvrir une large plage d’essai.

Système de filtration membranaire et débitmètre Coriolis - Convergence 2

Ce système de Convergence a permis à leur client d’améliorer considérablement son procédé. Avant l’utilisation du système de Convergence, il s’agissait d’un procédé manuel qui était plutôt chronophage et pas toujours précis. Aujourd’hui, l’ensemble du procédé est automatisé grâce à un logiciel de Convergence spécifique au client, ce qui permet de commander de manière précise le débitmètre massique Coriolis avec la pompe et, par conséquent, l’écoulement de perméat peut à présent être régulé rapidement et de manière précise. Ceci se traduit par un bon niveau de reproductibilité, de fiabilité, d’enregistrement de données et des délais d’exécution plus courts pour l’expérimentation, comparé à ce qu’ils étaient auparavant. Ce système personnalisé permet de générer une quantité suffisante de résidus pour faire des essais, sans qu’il soit nécessaire d’augmenter l'échelle du procédé jusqu'à la taille d'une installation pilote.

Consultez les débitmètres Coriolis disponibles pour cette application : débitmètres massiques Coriolis

Pour d’autres informations concernant la filtration membranaire, veuillez contacter la société Convergence.

Vous souhaitez être informé de nos dernières solutions de mesure et recevoir chaque mois nos conseils par mail ? Inscrivez-vous à notre newsletter.

La gourmandise qui met tout le monde d’accord : le chocolat !

Comment les débitmètres massiques Coriolis améliorent le dosage des additifs dans le processus de production du chocolat ?

Sandra Wassink
Cover Image

Ce week-end, c’est le week-end de Pâques ! C’est le temps fort des ventes de chocolat. Si vous vous rendez au supermarché, vous trouverez en ce moment des œufs en chocolat, des lapins de Pâques et différentes variétés de confiseries. A l'agence, nous avons également un grand panier rempli de délicieux œufs colorés en chocolat !

Et si nous parlons de différents arômes de chocolat, c'est en partie parce que les instruments de mesure entrent en jeu.

L'industrie du chocolat

Nous allons nous pencher sur l’incroyable dynamisme du secteur de la chocolaterie fine et les tendances en matière de chocolat aromatisé. Qui est mieux placé qu’une femme pour en parler ? 75 % des femmes déclarent adorer le chocolat, contre 68 % des hommes.

Le chocolat : un marché mondial en plein essor du haut de ses 100 milliards de dollars, dont le choix de produits se résumait autrefois à trois variétés : chocolat noir, blanc ou au lait. À l’heure actuelle, la créativité en matière de chocolats aromatisés semble inépuisable.

Le chocolat est le cadeau saisonnier par excellence. Nous avons tendance à acheter plus de chocolats pendant les fêtes. La meilleure fête n’est pas la Saint Valentin, comme on pourrait le croire, mais Pâques. Le chocolat est à la fois un petit plaisir et un remède à la déprime, argument de vente qui fait mouche, surtout chez les jeunes adultes. La majorité des amateurs de chocolat, en particulier aux États-Unis, sont friands de produits avec des mélanges, loin des variétés neutres/non aromatisées.

Production du chocolat

Textures et arômes

Le marché mondial de la chocolaterie est le théâtre d’innovations incroyables en matière de goût et de texture. De nouveaux produits créatifs ne cessent de voir le jour, s’attardant davantage sur les arômes et les textures que sur le classique goût sucré. Mais la base de consommateurs reste plutôt traditionnelle, plébiscitant des parfums intemporels comme noisette, caramel, amande et orange.

Les consommateurs plus âgés ont tendance à bouder le chocolat. Ce manque d’intérêt traduit une volonté de manger plus sain. Pour séduire ces consommateurs adultes, les chocolatiers se tournent vers des tactiques comme des parfums alcoolisés et un positionnement haut de gamme avec, par exemple, du chocolat noir au limoncello ou des chocolat à la liqueur.

Système de dosage avec débitmètres Coriolis

Une hygiène de vie saine

C’est surprenant, mais la tendance mondiale envers une hygiène de vie plus saine explique en grande partie la croissance du marché du chocolat, à juste titre. Le chocolat, et surtout le chocolat noir à plus de 85 % de cacao, est excellent pour la santé : parmi ses vertus, il est « riche en fibres, fer, magnésium, cuivre, manganèse et autres minéraux », « source d’antioxydants » et « protège des maladies cardiovasculaires ».

Le fait que les consommateurs connaissent mieux les bienfaits du chocolat noir pur explique pourquoi sa consommation est à la hausse. Avec la montée en popularité du chocolat noir, les ventes d’autres variétés suivent le mouvement. Les consommateurs cherchent d’autres options « saines », comme du chocolat sans sucre, sans gluten, casher ou issu du commerce équitable. Ces qualités éthiques donnent au secteur l’occasion de se diversifier plus que jamais. Pour asseoir l’image saine du chocolat, des ingrédients fonctionnels comme des fibres, des protéines, des micro-nutriments, de l’énergie (extrait de guarana), de l’extrait de thé vert ou des graines de chia entrent de plus en plus souvent dans la composition du chocolat.

Le cacao

L’augmentation de la demande en faveur du chocolat a aussi ses mauvais côtés. Environ trois millions de tonnes de fèves de cacao sont consommées chaque année, dont plus de 70 % proviennent de seulement quatre pays : la Côte d’Ivoire, le Ghana, le Nigéria et le Cameroun, tous en Afrique de l’Ouest . Le cacao est une culture fragile et les arbres plantés voilà 25 ans ont atteint leur pic de production ; les terres sur lesquelles ils sont cultivés ont perdu de leur fertilité. Une réhabilitation des terres et des arbres à grande échelle est désormais un passage obligé si l’on veut éviter de voir la production baisser. Le changement climatique fait aussi payer un lourd tribut à ce secteur, avec à la clé un prix élevé des matières premières et une économie instable dans les nations productrices de cacao. Pour éviter toute pénurie, de nombreux chocolatiers de renom ont décidé d’investir en faveur de la réhabilitation des terres et des arbres pour pérenniser la production de cacao, ceci alors que des pays en développement comme la Chine, l’Inde et la Russie s’apprêtent à voir leurs ventes de chocolat augmenter de 30 %.

Les débitmètres massiques et le chocolat

En raison de la croissance effrénée des variantes de chocolat intégrant toujours plus d’arômes et d’ingrédients fonctionnels, les débimètres et les régulateurs de débit massique font leur entrée dans le secteur de la chocolaterie. Grâce à leur précision et leur stabilité, surtout en association avec une pompe, les débitmètres et les régulateurs de débit massique Coriolis sont parfaits pour doser ces additifs.

Les instruments Coriolis de Bronkhorst mesurent le débit massique direct, indépendamment des propriétés des fluides : en d’autres termes, un changement précis est possible en quelques secondes, sans démonter la pompe ni recalibrer l’installation. C’est un atout immense qui permet de gagner du temps, et assouplit énormément le processus.

Grâce aux instruments massiques Coriolis pour le dosage des additifs, bénéficiez de temps d’arrêt plus court entre chaque lot, d’une meilleure traçabilité des ingrédients et de produits plus uniformes et qualitatifs.

Visionnez la vidéo et visitez notre site internet pour avoir plus d'informations sur le dosage précis des additifs en confiserie

Que faire en cas de vibrations lors de l’utilisation de débitmètres massiques Coriolis ?

Le principe de mesure de Coriolis est sensible aux vibrations avec une fréquence proche de celle de résonance du tube du capteur ou une harmonique plus élevée de cette fréquence. Que pouvez-vous faire?

Ferdinand Luimes
Cover Image

Instrument connu pour sa grande précision, un débitmètre massique Coriolis présente de nombreux avantages par rapport aux autres appareils de mesure. Chaque principe de mesure pose toutefois ses problèmes et le principe de Coriolis n’échappe pas à la règle. L’utilisation d’instruments Coriolis peut être un défi considérable pour les applications à bas débit de l’industrie lourde où l’on peut avoir affaire à toutes sortes de vibrations. Dans cette publication, j’aimerais partager avec vous mes expériences en la matière.

Le principe de Coriolis

Les débitmètres massiques Coriolis présentent de nombreux avantages sur les autres appareils de mesure. Tout d'abord, les instruments à effet Coriolis mesurent le débit massique direct. Il s’agit d’une caractéristique importante pour l’industrie, car elle élimine les imprécisions dues aux facteurs de correction calculés avec incertitudes des propriétés physiques du fluide. Autre avantage : les instruments à effet Coriolis sont très précis, offrent une excellente répétabilité, ne contiennent aucune pièce mobile et ont une plage dynamique élevée, etc.

Pour en savoir plus sur l’importance de la mesure de débit massique et la pertinence de la technologie Coriolis, lisez le précédent article de notre blog : l’importance de la mesure de débit massique et la pertinence de la technologie Coriolis.

Les vibrations influencent-elles la précision de mesure d’un débitmètre massique Coriolis ?

Dans les applications industrielles, toutes sortes de vibrations avec différentes fréquences sont très courantes. Un débitmètre Coriolis mesure un débit massique à l’aide d’un tube capteur vibrant, dont la fluctuation se déphase lorsque la masse du fluide s’écoule au travers de celui-ci, comme cela est expliqué dans la vidéo à la fin de cet article.

Cette technique de mesure est sensible aux vibrations non désirées ayant une fréquence proche de celle de résonance du tube capteur (cela dépend de la conception du tube capteur, par ex. 360 Hz) ou une harmonique plus élevée de cette fréquence (voir la photo ci-dessous).

Description de l’image les débitmètres Coriolis ne sont sensibles qu’à la fréquence de résonance ou à une harmonique plus élevée de cette fréquence

La probabilité de présence de ces vibrations non désirées est plus grande dans un environnement industriel. Aussi les fabricants de débitmètres Coriolis font de leur mieux pour réduire l’influence des vibrations sur la valeur mesurée par l’utilisation de solutions techniques courantes, à savoir :

  • des fréquences plus élevées
  • des tubes à double capteur
  • différentes formes de capteur
  • l'utilisation de lest (ex.: des blocs massiques)
  • la compensation passive et active des vibrations
  • des compensateurs de dilatation

Donc oui, les vibrations peuvent influencer la précision de mesure de votre débitmètre Coriolis, mais seulement si elles ont une fréquence proche de la fréquence de résonance. Que pouvez-vous y faire ? Cela dépend du type de vibration.

Quels types de vibrations existent-t-il ?

Dans un environnement industriel, les fréquences peuvent être générées par :

  • les sources de vibration liées à l’environnement (transport routier, les voies ferrée, activités industrielles)
  • les sources de vibration liées au bâtiment (installations mécaniques et électriques, comme la climatisation)
  • les sources de vibration liées à l’usage (équipement et machines installés, par ex. les pompes, les convoyeurs).

Ces vibrations traversent les éléments comme le sol, l’air, des tuyaux ou le fluide en tant que tel. Si ces vibrations perturbent la fréquence de Coriolis, le débit mesuré pourrait dans une certaine mesure être erronnée.

Afin d’atténuer les effets des vibrations, il est utile d’identifier ces causes. Parfois, il est possible de déplacer juste un peu le débitmètre, de le tourner (les débitmètres Coriolis sont dans la plupart des cas moins sensibles aux vibrations s’ils sont tournés de 90 degrés), d’utiliser un bloc massif lourd (ou plus important), d’utiliser des tubes souples ou des tubes métalliques en U ou des alternatives pour la suspension.

Comment pouvez-vous vérifier la performance d’un débitmètre Coriolis ?

Un débitmètre et un régulateur qui fonctionnent bien donneront les meilleurs résultats au procédé. Avant de leur faire entièrement confiance, il est donc conseillé de tester les instruments Coriolis dans votre application, si vous vous attendez à des vibrations équivalentes à celles de l’industrie lourde. Faites attention lors de la filtration du signal de mesure. Dans certains cas, cela semble judicieux (par ex. quand une réponse rapide n’est pas requise), mais si vous voulez évaluer le emps de réponse d’un débitmètre, la filtration pourrait fausser votre jugement.

Panneau de dosage Coriolis

Si, dans des circonstances spécifiques, le débitmètre Coriolis ne fonctionne pas comme il le devrait, l’opérateur constatera un changement à la sortie du procédé. Ainisi, par exemple, dans une application de dosage de la couleur d’un détergent, cela peut provoquer des différences de couleur du produit dues à un dosage incorrect et/ou à un comportement inattendu du signal de mesure. Dans ces cas-là, vérifier le signal de mesure brute (sans filtres !) est justifié, puisque cela vous donnera une bonne indication de la performance du débitmètre. Demandez au fabricant de votre débitmètre comment annuler la filtration de tous les signaux.

Normes relatives aux vibrations

Étonnamment, l’influence des vibrations externes n’est pas clairement définie dans une norme relative aux débitmètres Coriolis. Plusieurs normes portent sur les vibrations, mais aucune sur la précision des mesures en relation avec les vibrations. Il existe toutefois deux normes utiles relatives aux vibrations :

  • IEC60068-2, Essais d’environnement de l’équipement électronique concernant la sécurité
  • MIL STD 810, Considérations de génie écologique concernant les chocs, le transport et l’utilisation

En tant qu’utilisateur de débitmètres Coriolis, il est important de bien appréhender l’environnement de votre application, surtout en ce qui concerne les sources de vibrations externes potentielles. Spécialistes de l’effet Coriolis à bas débit, nous travaillons en collaboration avec des partenaires comme l’Université de Twente et le TNO (un organisme néerlandais de recherche scientifique appliquée) afin d’approfondir constamment notre compréhension de ces phénomènes et de leurs effets.

Dotés d’installations de tests en interne, nous sommes en mesure de réaliser des tests de vibrations spéciales. Forts de l’expérience acquise grâce aux applications de nos clients et à des solutions sur mesure, nous n’avons de cesse d’améliorer nos débitmètres Coriolis afin qu’ils donnent encore plus satisfaction à nos clients.

Regardez notre vidéo sur le principe de Coriolis :

En savoir plus sur le principe de mesure de Coriolis

Consultez notre cas d’utilisation des régulateurs de débit massique Coriolis pour l’odorisation de notre gaz naturel.

Débitmètres pour la mesure des multi-perfusions

Comment les débitmètres Coriolis de Bronkhorst sont utilisés pour la recherche des caractéristiques de débit des installations des multi-perfusions ?

Dr. Roland Snijder (HMC)
Cover Image

Cette semaine, nous publions un article de blog du Dr. Roland Snijder, physicien médical au centre Hospitalier de Haaglanden Medisch (Pays-Bas). Pour obtenir son doctorat à l'université d'Utrecht, Roland a travaillé en tant que chercheur sur le projet traitant des multi-perfusions au sein du département de Technologie Médicale & Physique Clinique de l'University Medical Center Utrecht (UMC Utrecht). Il a orienté ses recherches sur les causes physiques des erreurs de dosage dans les systèmes de multi-perfusions. Au cours de ce travail, les caractéristiques de débit des installations des multi-perfusions ont été analysées à l'aide de débitmètres à effet Coriolis de Bronkhorst. Dans cet article, Roland nous présente ses recherches (l'article original du Dr. Snijder a été rédigé en anglais, il a été traduit en français pour le blog).

Qu'est-ce que la perfusion ?

La plupart des patients admis à l'hôpital sont traités par des médicaments (produits pharmaceutiques). En soins intensifs notamment, un nombre important de patients nécessitent un traitement intraveineux. Un traitement intraveineux signifie qu'une solution de produits pharmaceutiques est administrée directement dans les veines. Ce procédé d'administration est appelé perfusion et est effectué en utilisant un dispositif permettant un accès vasculaire (par ex. un cathéter) qui est inséré dans la veine.

L'importance d'un débit précis

Souvent, les patients en soins intensifs, notamment les jeunes patients et les prématurés, souffrent de maladies qui nécessitent l'administration intraveineuse de produits pharmaceutiques très puissants et agissant sur un temps très court. Ces produits pharmaceutiques nécessitent typiquement une administration très précise où le moindre écart de débit, et donc de taux d'administration, peut facilement conduire à des erreurs de dosage. Pour cette raison, on utilise des pompes à perfusion ou pousse-seringue.

En plus de cela, l'accès vasculaire du patient est généralement limité à un point et par conséquent, de nombreuses pompes à perfusion doivent être connectées à travers un seul cathéter (multi-perfusions), ce qui rend tout le processus d'administration du produit pharmaceutique complexe et difficile à prévoir. Et parce que les erreurs de dosage sont courantes dans la pratique clinique, il était évident qu'il fallait pousser les recherches. Nombre des résultats de cette recherche figurent dans la thèse : “Physical Causes of Dosing Errors in Patients Receiving Multi-Infusion Therapy”.

Installation pompe à perfusion

Exemple d'une installation de multi-perfusions en pratique clinique.

Mesure de débit avec un débitmètre Coriolis

Nous avons réalisé un nombre important de mesures afin d'en savoir davantage sur les caractéristiques de débit des systèmes de multi-perfusions. Ces mesures ont été conduites à l'aide de débitmètres Coriolis Bronkhorst (série mini CORI-FLOW). Ces débitmètres nous ont permis de mesurer le débit des pompes à perfusion de manière exacte, précise et indépendante de la densité de la solution en train d'être mesurée (la plupart des solutions ont des propriétés proches de l’eau).

Ces débitmètres ont également été choisis car ils sont adaptés aux débits très faibles, les débits de perfusion pouvant être aussi bas que 0,1 ml/h. En fin de compte, c'est le débit de la quantité de matière ou le débit massique du produit pharmaceutique administré au patient qui est important.

Pour mesurer cela, nous avons utilisé une technique de spectrophotométrie d'absorption, ce qui nous a permis de mesurer la concentration d'une substance dans une solution, c'est-à-dire un produit pharmaceutique ou équivalent. Pour convertir la densité (par ex. µg/l) en un débit massique (par ex. µg/h), le débit cumulé (par ex. ml/h) du réglage de la perfusion a également été mesuré.

Débitmètre Mini-Coriflow M12-M14

Nous avons d'abord utilisé une balance de précision puis nous avons utilisé le débitmètre mini CORI-FLOW. Les données venant de la balance de précision étaient plutôt bruitées alors que le débitmètre fournissait des données très propres, ce qui a fortement amélioré nos mesures.

Toutefois, il fallait faire attention au fait que les débitmètres produisent une perte de charge qui se traduit par une résistance au passage du débit. Les implications de cet effet et la manière dont le réglage des mesures est lié à une situation clinique est expliqué en détails dans la thèse mentionnée plus haut.

La recherche a conclu qu’un grand nombre de paramètres de la perfusion avaient une influence particulière, généralement significative et que le personnel médical n'est généralement pas conscient des implications que cela a pour le traitement par perfusion. Il a été recommandé de prendre conscience des mécanismes sous-jacents de ces effets par la formation du personnel et l'innovation technique. Les débitmètres Coriolis de Bronkhorst se sont révélés être très adaptés pour découvrir les différents mécanismes des défaillances des systèmes de pompes à perfusion.

Pour en savoir plus : R.A. Snijder - Physical causes of dosing errors in patients receiving multi-infusion therapy (ISBN: 978-94-028-0382-2)

A propos de l'auteur :

Le Dr. R. A. (Roland) Snijder (1985) est physicien hospitalier au centre hospitalier Haaglanden Medisch Centrum (Pays-Bas). Il est diplômé d'un master en Ingénierie Biomédicale de l'Université de Groningen avec une spécialisation en physique médicale (instrumentation et imagerie médicales). Durant sa thèse de master, conduite à l'University Medical Center Groningen, il a effectué des recherches sur les effets de l'utilisation de la tomographie par ordinateur (CT) dans le dépistage du cancer du poumon. Après avoir achevé sa thèse de master en 2012, Roland a poursuivi en passant un PhD au département de Technologie Médicale et & Physique Clinique de l'University Medical Center Utrecht (UMC Utrecht).

Dr Roland Snijder

Dr. Roland Snijder

Vous voulez en savoir plus sur l'étalonnage des pompes à perfusion ? Lisez l’article de blog de Marcel Katerberg qui vous explique les performances de nouvelles techniques d'étalonnage de pompes à perfusion.