Série d'articles de blog : Comment traiter les faibles débits de liquide ? Partie 5/5

Quelle influence les conditions ambiantes, tels que les tuyaux et les vibrations, peuvent-elles avoir sur votre débitmètre ? Bronkhorst, spécialiste des solutions pour les faibles débits de liquide, partage des conseils pour optimiser votre procédé.

Bart de Jong
Cover Image

5ème partie - Comment gérer les conditions externes ?

Dans le monde de la régulation et de la mesure de débits, nous faisons une distinction entre « faibles débits » et « forts débits ». Mais qu’est-ce que cela signifie réellement ? Bronkhorst fournit des débitmètres et des régulateurs dans la gamme « faible débit ». Savez-vous ce que signifie « faible débit » ? Dans notre série d’articles, nous expliquons la différence et partageons nos conseils et nos astuces sur les installations à faible débit de liquide. Dans cette dernière partie de notre série d’articles, vous en apprendrez plus sur l’influence des conditions ambiantes sur les instruments.

Quelle influence les conditions ambiantes peuvent-elles avoir sur votre débitmètre ?

Les débitmètres Bronkhorst mentionnés dans les précédents articles de la série, qui sont capables de mesurer des (ultra) faibles débits, y sont très sensibles. Cela implique que même les perturbations les plus infimes du procédé d’un client ou des conditions ambiantes peuvent être perceptibles. Toute perturbation éventuellement déjà présente dans le procédé est désormais vue par le capteur, grâce aux mesures beaucoup plus précises de ces débitmètres très sensibles. Un client peut alors réagir en se disant que « quelque chose ne va pas avec ce débitmètre ! » Mais n’oubliez pas que nos outils ne sont que des transmetteurs d’information ! Et utilisez plutôt les informations de cette série d’articles de blog pour optimiser votre propre procédé. Vérifiez les éléments externes tels que les tuyaux qui en amont et en aval du débitmètre, l’influence de tout équipement vibrant dans l’environnement ou l’éventuelle présence de particules solides dans le liquide.

Pour mettre ce qui précède en pratique : lors du choix d’un régulateur de débit ou d’un débitmètre massique Coriolis, une pression amont relativement élevée sera nécessaire pour compenser la chute de pression (perte de charge) relativement élevée de l’appareil, ce qui est globalement le cas lorsque les instruments Coriolis fonctionnent dans leur plage de débit nominale. Toutefois, pour les instruments Coriolis ayant une large gamme de mesure (jusqu’à 1 % de la pleine échelle), la perte de charge dans la partie inférieure de l’échelle est généralement négligeable et comparable à celle des débitmètres thermiques.

Bien que les mesures faites avec un débitmètre Coriolis soient beaucoup plus précises qu’avec un débitmètre thermique, une forte pression amont d’un volume sous pression va causer la dissolution d’une plus grande quantité de gaz dans le liquide. La libération de ce gaz dissous sous forme de bulles lors de la détente à une pression inférieure dans le procédé entraîne une instabilité. Cette série d’articles sur les faibles débits est destinée à vous sensibiliser à tout ce que vous pouvez faire pour améliorer la configuration de votre procédé, chaque méthode ayant ses propres avantages, ses inconvénients et ses effets induits.

Quels tuyaux dois-je choisir ?

Choisissez le plus petit tuyau possible. En minimisant la longueur et le diamètre du tuyau d’alimentation de liquide entre le débitmètre et le procédé, le temps nécessaire au remplissage et au renouvellement sera aussi court que possible. La chute de pression sur les débitmètres massiques Coriolis est beaucoup plus importante que sur les débitmètres thermiques parce que le capillaire de ces derniers est environ 20 fois plus court et que son diamètre est plus large. Trouvez la solution optimale entre la perte de charge et le plus petit volume intérieur de tuyau possible. Pour les faibles débits jusqu'à 100 g/h, il est recommandé d’utiliser un tuyau d’un diamètre extérieur de 1/16 pouce (~ 1,6 mm). Pour les débits supérieurs, nous recommandons des tuyaux de 1/8 pouce (~ 3,2 mm) afin de limiter la perte de charge. Essayez d’utiliser aussi peu que possible des raccords, coudes ou connecteurs en T, car ils risquent de provoquer une accumulation de bulles d’air et une instabilité du débit. Si nécessaire, utilisez des raccords de petit volume.

conduites

Le choix de tuyaux rigides (en acier inoxydable, par exemple) ou souples dépend principalement de la pression d’utilisation. Il est rare que des tuyaux souples soient utilisés à haute pression. Pour les débits inférieurs à 2 g/h, l’utilisation de tuyaux rigides est fortement recommandée parce qu’elle permet de prévenir les changements de volume interne et perturber la mesure. Pour les débitmètres avec capillaires en hastelloy, nous recommandons d’utiliser des tuyaux en hastelloy. Du polyétheréthercétone, ou PEEK, est de préférence appliqué pour les liquides agressifs qui attaquent l’acier inoxydable.

Se prémunir des coups de bélier en évitant les changements soudains de diamètres des tuyaux

Le coup de bélier est un phénomène qui nécessite une attention particulière. Vous le connaissez déjà de par vos toilettes ou votre lave-vaisselle à la maison : il s’agit du choc hydraulique qui se produit lorsqu’un liquide en mouvement est soudainement forcé à s’arrêter ou à changer de direction. Il en résulte alors des variations de pression nettement supérieures aux valeurs de pression (statique) pour lesquelles un système a généralement été dimensionné.

Préservez-vous des coups de bélier en évitant les changements soudains de diamètre d’un tuyau à l’autre, en installant un petit amortisseur de pulsations (lorsqu’une colonne de gaz isolée avec une membrane a un effet d'amortissement), en augmentant progressivement une pression appliquée ou en évitant de faire fonctionner une pompe alors qu’une vanne est fermée.

Comment gérer les vibrations ?

Les vibrations d’une pompe ou d’un autre équipement environnant peuvent avoir un impact négatif sur les performances des débitmètres massiques Coriolis. En effet, le principe de fonctionnement des instruments Coriolis repose sur les vibrations. Il convient donc de s’assurer que les pompes et autres machines environnantes vibrent à des fréquences différentes de celle du débitmètre Coriolis. Afin d’empêcher ces vibrations extérieures d’atteindre le débitmètre Coriolis, vous pouvez utiliser un tuyau en PEEK (légèrement flexible), ou le débitmètre/régulateur de débit peut être dissocié mécaniquement en faisant faire une boucle au tuyau rigide (« lyre en cor de chasse »). Pour les instruments Coriolis, Bronkhorst dispose de blocs massiques de 2 kg et 4 kg avec amortisseurs de vibrations, des éléments tampons supplémentaires pour absorber les vibrations.

bloc massique mini-coriflow

Bloc massique pour débitmètres Coriolis

Lisez notre article : Que faire en cas de vibrations lors de l'utilisation de débitmètres massiques Coriolis

Et concernant l’étalonnage ?

Nous vous recommandons d’étalonner les débitmètres thermiques tels que les appareils μ-FLOW et LIQUI-FLOW une fois par an. Pour les appareils Coriolis comme le mini CORI-FLOW ML120, aucun étalonnage n’est nécessaire, car leur principe de mesure est moins sensible au vieillissement. Dans certains secteurs (automobile, pharmacie et alimentation, par exemple), un étalonnage régulier est toutefois exigé par la législation ou par la normalisation. Dans ces secteurs, il est d’une importance vitale que les appareils de mesure indiquent des valeurs exactes. À des fins d’étalonnage, il peut être utile d’appliquer des tuyaux flexibles transparents, en Téflon, par exemple, afin de pouvoir détecter visuellement toute bulle de gaz présente dans le liquide d’étalonnage.

Centre d'étalonnage Bronkhorst

Centre d'étalonnage Bronkhorst

Utilisez des filtres à particules pour éviter tout encrassement

Afin d’empêcher les tuyaux et capillaires de débitmètres de petit diamètre de s’encrasser, ou de prévenir les dommages des vannes de régulation piézoélectriques, il est recommandé d’intégrer en amont un ou plusieurs filtres à particules. Cette démarche est importante en cas d’utilisation de capteur à petit diamètre et de vannes de régulation pour les débits les plus faibles. Les pores du filtre doivent être au moins dix fois plus petits que le capillaire de mesure, orifice ou restriction de régulation dans le système et, en amont d’une vanne de commande piézoélectrique, la taille recommandée pour les pores est de 5 microns. Une grande surface de filtre peut compenser une perte de charge importante causée par la petite taille des pores.

Plus d'information sur les filtres de Bronkhorst

Vous souhaitez en savoir plus ?

Cet article est la dernière partie des 5 articles de blog de cette série. Consultez les parties précédentes :

Vous avez des questions concernant les faibles débits ? Contactez notre équipe.

Débitmètres pour la mesure des multi-perfusions

Comment les débitmètres Coriolis de Bronkhorst sont-ils utilisés pour la recherche des caractéristiques de débit des installations des multi-perfusions ?

Dr. Roland Snijder (HMC)
Cover Image

Cette semaine, nous publions un article de blog du Dr. Roland Snijder, physicien médical au centre Hospitalier de Haaglanden Medisch (Pays-Bas). Pour obtenir son doctorat à l'université d'Utrecht, Roland a travaillé en tant que chercheur sur le projet traitant des multi-perfusions au sein du département de Technologie Médicale & Physique Clinique de l'University Medical Center Utrecht (UMC Utrecht). Il a orienté ses recherches sur les causes physiques des erreurs de dosage dans les systèmes de multi-perfusions. Au cours de ce travail, les caractéristiques de débit des installations des multi-perfusions ont été analysées à l'aide de débitmètres à effet Coriolis de Bronkhorst. Dans cet article, Roland nous présente ses recherches.

Qu'est-ce que la perfusion ?

La plupart des patients admis à l'hôpital sont traités par des médicaments (produits pharmaceutiques). En soins intensifs notamment, un nombre important de patients nécessitent un traitement intraveineux. Un traitement intraveineux signifie qu'une solution de produits pharmaceutiques est administrée directement dans les veines. Ce procédé d'administration est appelé perfusion et est effectué en utilisant un dispositif permettant un accès vasculaire (par ex. un cathéter) qui est inséré dans la veine.

L'importance d'un débit précis

Souvent, les patients en soins intensifs, notamment les jeunes patients et les prématurés, souffrent de maladies qui nécessitent l'administration intraveineuse de produits pharmaceutiques très puissants et agissant sur un temps très court. Ces produits pharmaceutiques nécessitent typiquement une administration très précise où le moindre écart de débit, et donc de taux d'administration, peut facilement conduire à des erreurs de dosage. Pour cette raison, on utilise des pompes à perfusion ou pousse-seringue.

En plus de cela, l'accès vasculaire du patient est généralement limité à un point et par conséquent, de nombreuses pompes à perfusion doivent être connectées à travers un seul cathéter (multi-perfusions), ce qui rend tout le processus d'administration du produit pharmaceutique complexe et difficile à prévoir. Et parce que les erreurs de dosage sont courantes dans la pratique clinique, il était évident qu'il fallait pousser les recherches. Nombre des résultats de cette recherche figurent dans la thèse : “Physical Causes of Dosing Errors in Patients Receiving Multi-Infusion Therapy”.

Installation pompe à perfusion

Exemple d'une installation de multi-perfusions en pratique clinique.

Mesure de débit avec un débitmètre Coriolis

Nous avons réalisé un nombre important de mesures afin d'en savoir davantage sur les caractéristiques de débit des systèmes de multi-perfusions. Ces mesures ont été conduites à l'aide de débitmètres Coriolis Bronkhorst (série mini CORI-FLOW). Ces débitmètres nous ont permis de mesurer le débit des pompes à perfusion de manière exacte, précise et indépendante de la densité de la solution en train d'être mesurée (la plupart des solutions ont des propriétés proches de l’eau).

Ces débitmètres ont également été choisis car ils sont adaptés aux débits très faibles, les débits de perfusion pouvant être aussi bas que 0,1 ml/h. En fin de compte, c'est le débit de la quantité de matière ou le débit massique du produit pharmaceutique administré au patient qui est important.

Pour mesurer cela, nous avons utilisé une technique de spectrophotométrie d'absorption, ce qui nous a permis de mesurer la concentration d'une substance dans une solution, c'est-à-dire un produit pharmaceutique ou équivalent. Pour convertir la densité (par ex. µg/l) en un débit massique (par ex. µg/h), le débit cumulé (par ex. ml/h) du réglage de la perfusion a également été mesuré.

Débitmètre Mini-Coriflow M12-M14

Nous avons d'abord utilisé une balance de précision puis nous avons utilisé le débitmètre mini CORI-FLOW. Les données venant de la balance de précision étaient plutôt bruitées alors que le débitmètre fournissait des données très propres, ce qui a fortement amélioré nos mesures.

Toutefois, il fallait faire attention au fait que les débitmètres produisent une perte de charge qui se traduit par une résistance au passage du débit. Les implications de cet effet et la manière dont le réglage des mesures est lié à une situation clinique est expliqué en détails dans la thèse mentionnée plus haut.

La recherche a conclu qu’un grand nombre de paramètres de la perfusion avaient une influence particulière, généralement significative et que le personnel médical n'est généralement pas conscient des implications que cela a pour le traitement par perfusion. Il a été recommandé de prendre conscience des mécanismes sous-jacents de ces effets par la formation du personnel et l'innovation technique. Les débitmètres Coriolis de Bronkhorst se sont révélés être très adaptés pour découvrir les différents mécanismes des défaillances des systèmes de pompes à perfusion.

L'article original du Dr. Snijder a été rédigé en anglais, il a été traduit en français pour le blog.

Pour en savoir plus : R.A. Snijder - Physical causes of dosing errors in patients receiving multi-infusion therapy (ISBN: 978-94-028-0382-2)

A propos de l'auteur :

Le Dr. R. A. (Roland) Snijder (1985) est physicien hospitalier au centre hospitalier Haaglanden Medisch Centrum (Pays-Bas). Il est diplômé d'un master en Ingénierie Biomédicale de l'Université de Groningen avec une spécialisation en physique médicale (instrumentation et imagerie médicales). Durant sa thèse de master, conduite à l'University Medical Center Groningen, il a effectué des recherches sur les effets de l'utilisation de la tomographie par ordinateur (CT) dans le dépistage du cancer du poumon. Après avoir achevé sa thèse de master en 2012, Roland a poursuivi en passant un PhD au département de Technologie Médicale et & Physique Clinique de l'University Medical Center Utrecht (UMC Utrecht).

Dr Roland Snijder

Dr. Roland Snijder

Vous voulez en savoir plus sur l'étalonnage des pompes à perfusion ? Lisez l’article de blog de Marcel Katerberg qui vous explique les performances de nouvelles techniques d'étalonnage de pompes à perfusion.

Abonnez-vous à notre newsletter !
Et profitez de nos articles de blog et nos conseils pratiques directement dans votre boîte mail.

Comment les régulateurs massiques contribuent à la fiabilité des procédés de fabrication de l'industrie pharmaceutique ?

Découvrez pourquoi le régulateur de débit massique Coriolis est la solution adaptée pour doser les excipients pharmaceutiques.

Anthony O'Keeffe
Cover Image

Un client qui nous avait contactés pour l'aider à doser des excipients pharmaceutiques avec la plus grande précision possible est à l'origine de mon intérêt pour l'adoption de la fabrication en continu par l'industrie pharmaceutique. Ce client prévoyait l'installation d'une unité de fabrication pharmaceutique en continu.

Procédé de fabrication par lots

Traditionnellement, la plupart des produits pharmaceutiques destinés à l'homme sont fabriqués dans un procédé de traitement par lots, étape par étape, avec des tests complets entre les étapes afin d'assurer la constance de la qualité et l'efficacité du médicament.

La fabrication de produits pharmaceutiques est un procédé strictement réglementé, avec des organismes gouvernementaux chargés d'inspecter et d'approuver les procédés et les sites de production des médicaments. En 2016, aux États-Unis, la Food and Drug Administration (FDA) a autorisé, pour la première fois de son histoire, un fabricant à passer du procédé de fabrication par lots traditionnel à un procédé de fabrication en continu.

Procédé de fabrication en continu

La fabrication en continu est une technologie innovante qui a le potentiel de transformer le mode de fabrication des médicaments à l'avenir. Des améliorations apportées à la technologie analytique des procédés ont permis d'automatiser et de rationaliser ce qui était jusqu'alors des procédés de fabrication étape par étape laborieux. Il est désormais possible de mélanger les ingrédients avec précision dans un réacteur continu, de surveiller soigneusement et de contrôler la vitesse de réaction, et d'atteindre un rendement plus élevé que ce qui était possible il y a 10 ans à peine.

Les débits de liquide de ces nouveaux systèmes de procédés continus sont bien moins importants que ceux des anciens procédés de traitement par lots. Les laboratoires, qui mesuraient leurs débits en tonnes par heure, opèrent désormais à des débits qui se comptent en kilogrammes par heure (kg/h), voire, dans certains domaines, en grammes par heure (g/h), ou à des débits volumiques mesurés en ml/h.

Quand utiliser la fabrication en continu ?

Les nouveaux médicaments ont tendance à être destinés à des maladies moins répandues et n'exigent pas les grandes quantités d'ingrédients pharmaceutiques actifs fabriquées dans le passé. La fabrication pharmaceutique en continu est la solution idéale pour produire ces nouveaux médicaments.

Étant donné que Bronkhorst offre la gamme de débitmètres et de régulateurs massiques et volumétriques à faible débit la plus vaste du marché, le client nous a sélectionnés et chargés de trouver la meilleure solution de contrôle et de surveillance du débit pour ce nouveau procédé.

La solution : les régulateurs de débit massique Coriolis

Le client avait besoin d'un procédé souple, en mesure de surveiller et de réguler le débit des différents fluides et de s'adapter automatiquement à toute variation de pression ou perturbation. Le client avait en outre besoin d'un enregistrement exhaustif des données de débit en temps réel et de capacités de contrôle via son système de commande DCS.

Après un examen attentif des besoins du procédé, nous avons suggéré que la solution idéale aux strictes exigences de régulation du débit du procédé de fabrication pharmaceutique en continu serait de combiner notre régulateur de débit massique mini CORI-FLOW avec une pompe à engrenages.

SKID avec pompe et débitmètre Coriolis

Le facteur décisif pour l'utilisation du régulateur de débit massique mini CORI-FLOW ont été ses caractéristiques :

  • Mesure directe du débit massique, indépendamment des propriétés du fluide
  • Capacité de mesurer la densité et la température
  • Capacité d'opter pour la mesure du débit volumétrique
  • Haute précision, excellente reproductibilité
  • Design compact avec régulateur PID autonome intégré pour une régulation rapide et stable
  • Compatibilité avec une large plage de débits
  • Technologie numérique permettant l'interface avec les systèmes DCS utilisant Profibus
  • Acier inoxydable résistant aux produits chimiques et hastelloy pour les pièces en contact avec le fluide
  • Boucle de régulation fermée permettant une réponse rapide avec le contrôle direct de la pompe pour modifier les conditions du procédé
  • Associé à notre régulateur de pression IN-PRESS, le système offre une régulation du débit et de la pression plus souple pour certaines parties cruciales du procédé.
  • Tous les paramètres pouvant être enregistrés, cette technologie offre par conséquent une excellente traçabilité du procédé.

Si vous souhaitez plus d’informations, vous pouvez télécharger notre brochure (en anglais) sur la fabrication pharmaceutique en continu: « Continuous Pharmaceutical Manufacturing » ou nous poser vos questions à l'aide de notre formulaire de contact.

Série d'articles de blog : Comment traiter les faibles débits de liquide ? Partie 1/5

Comment traiter les faibles débits de liquide ? Quelle différence entre faible débit et débit élevé ? Nous vous disons tout sur les faibles débits sur notre blog.

Ron Tietge
Cover Image

1ère partie - Que sont les faibles débits de liquide ?

Qu’ont en commun les microréacteurs, la recherche sur les catalyseurs et le dosage d’odorants ? Eh bien, ils nécessitent tous l’utilisation de faibles débits de liquide. Dans le monde de la régulation et de la mesure de débits, nous pouvons identifier des « faibles débits » et des « forts débits ». Mais qu’est-ce que cela signifie réellement ? Bronkhorst High-Tech est un fournisseur reconnu de débitmètres et régulateurs de débit dans la gamme des « faibles débits ». Il est temps donc d’expliquer de quoi nous parlons lorsque nous parlons de « faible débit de liquide ».

À cet effet, nous avons préparé une série d'articles de blog avec des recommandations pour le traitement des faibles débits de liquide. Outre la définition du faible débit et des conseils pour la sélection du débitmètre, vous trouverez dans ces articles des conseils sur les configurations des systèmes, les interfaces de communication et les systèmes d’alimentation de liquide. Étant donné que les utilisations du débit et les conditions de procédé chez divers clients sont rarement les mêmes, il n’existe pas de solution unique disponible pour tous les cas. Ceci requiert une certaine connaissance et compréhension de l’application du client pour donner le meilleur conseil.

Que sont les (ultra-)faibles débits de liquide ?

La définition de « faible » est arbitraire et elle dépend du champ d’activité. Dans l’industrie du vrac, des débits largement inférieurs à 500 kg/h sont considérés comme faible débit, alors que dans le domaine de la recherche, ce terme est attribué à des débits qui sont inférieurs à 100 grammes par heure. Les articles de blog suivants se concentrent sur la manipulation (mesurer aussi bien que réguler) de débits de liquide jusqu’à 100 g/h. De plus, nous mettons l’accent sur les ultra-faibles débits, que nous définissons dans la plage < 5 g/h.

Pour vous faire une idée du sujet, imaginez une goutte d’eau. Avec un diamètre type d’un demi-centimètre, 100 grammes par heure est équivalent à environ 2000 gouttes d'eau par heure, assez faible en effet. Et 100 gouttes correspondent à 5 grammes, à doser dans notre heure.

Des instruments précis pour la mesure et la régulation de faibles débits de liquide ont prouvé leur utilité dans un large éventail d’applications. Par exemple :

  • L’approvisionnement de 100 g/h d’huile de perçage en tant qu’agent lubrifiant est surveillé durant le perçage de trous dans la fabrication de pièces de fuselage d’avions. Lisez la note d'application : Lubricant dosing in airplane manufacturing.

dosage lubrifiant fuselage

  • Un débit d’éthanol liquide ultra-faible de 2 g/h est évaporé en vue de générer un débit stable de vapeur d’éthanol en tant que source de carbone, dans la R&D pour la production de graphène de haute qualité. Lisez la note d'application Research high-quality graphene production.
  • Dans l’étude de catalyse haute pression, des faibles débits liquides de composés d’hydrocarbure doivent être dosés en tant que débit stable sans pulsation. Lisez la note d'application : Catalysis at high pressure.
  • Les laboratoires sur puce ( Lab on chip) et autres dispositifs microfluidiques dans les domaines pharmaceutiques et biotechnologiques, réduisent fortement la quantité de produits chimiques et la durée des expériences nécessaires, comparé aux moyens traditionnels. Lisez la note d'application : Flow measurement in microfluidics.
  • L’odeur typique de gaz naturel ou biogaz provient d’un « agent d’avertissement » qui a été ajouté artificiellement au gaz, injecté en quantité petite mais continue en tant qu’additif liquide. Lisez la note d'application : Controlled supply of odorant to natural gas.

faible débit liquide gaz naturel

Dans tous ces cas, la mesure ou le dosage de la quantité correcte de liquide (ni trop, ni trop peu), sont essentiels pour une bonne performance du procédé concerné.

Débit massique contre débit volumique

Dans le paragraphe précédent, le débit est exprimé en unités de masse, telles que grammes/heure ou milligrammes/seconde. Cependant, de nombreux utilisateurs pensent et travaillent en unités de volume. C’est acceptable, du moins lorsque nous parlons des mêmes conditions de référence. Consultez notre article de blog « Savez-vous pourquoi les conditions de référence pression/température des unités de mesure de débit massique gaz sont importantes ? », pour en savoir plus sur les conditions de référence.

Débit massique ou volumique

Qu'y-a-t-il de si typique concernant les faibles débits ?

Comment un faible débit de liquide de moins de 100 g/h se distingue-t-il de débits « normaux » ou élevés ? Eh bien, les applications à (ultra-)faible débit impliquent certains phénomènes qui ne sont pas observés […] avec des débits plus importants. En raison de la (très) petite quantité de liquide qui est déplacée, les (ultra-)faibles débits sont si sensibles que les perturbations les plus infimes dans les conduites du fluide, le procédé ou les conditions ambiantes, peuvent avoir un effet significatif sur la stabilité du débit. Par conséquent, l’influence des conditions externes sur la stabilité du débit est cruciale ici, ainsi que les moyens pour réguler ces conditions externes. Par exemple, même les petites fuites de gaz ou de liquides à l’intérieur ou vers l’extérieur du procédé, ont une influence considérable sur le débit de liquide prévu. De plus, vous pouvez imaginer que l’obstruction par des particules solides ou les contaminations dans les conduites de faibles débits de liquide va réduire le débit d’une manière considérable. Et particulièrement pour le dosage de faible débit de liquide, les variations de pression entraîneront des débits instables. Des variations dans la pre-pressurisation, une pulsation due à des volumes de course de piston de pompe trop importants comparé au débit, et la dissolution de gaz (air sous pression) lors de la pressurisation du liquide à doser, auront toutes pour conséquence un débit instable.

La connaissance de l’application, ainsi que des phénomènes de transport physique du procédé, est essentielle pour traiter la question complexe de la manipulation de faibles débits. L’optimisation de la stabilité du débit et des performances des systèmes de fluides, requiert une connaissance approfondie des caractéristiques des fluides et des composants des systèmes dans un large éventail de circonstances. Chaque composant utilisé dans un système fluidique peut affecter le comportement du fluide ou interagir avec d’autres composants, particulièrement lorsqu’il s’agit de faibles débits.

Solutions pour des performances optimales

Au sein de la gamme de produits Bronkhorst, les débitmètres massiques et régulateurs de débit massique à base thermique μ-FLOW et LIQUI-FLOW, ainsi que les appareils Coriolis mini CORI-FLOW ML120 et mini CORI-FLOW M12, sont particulièrement adaptés pour les applications de (ultra-)faible débit de liquide. Alors qu’un débitmètre se compose d’un capteur qui mesure uniquement le débit du fluide, un régulateur de débit massique combine un capteur avec une vanne de régulation ou une pompe afin de réguler le débit du fluide. Découvrez la « théorie du régulateur de débit massique ».

Débitmètre micro-débitRégulateur de débit liquideDébitmètre Coriolis ultre-faible débit

Les régulateurs de débit sont utilisés d’habitude pour générer un débit stable. Cependant, des performances optimales nécessitent bien plus qu’un excellent régulateur de débit. Par exemple, assurez-vous qu’il n’y ait pas de fuites dans l’installation et utilisez des tubes de faible volume. De plus, dans les conteneurs sous pression, évitez d’utiliser du gaz qui se dissout dans le liquide, ou utilisez des moyens pour éliminer ce gaz.

Ne manquez pas la 2ème partie !

Vous cherchez des conseils pratiques notamment sur la sélection du bon appareil à faible débit ? Lisez nos prochains articles !

Les articles de blog sur la régulation du débit les plus populaires en 2019

Quel article de notre blog a été le plus amusant, le plus utile, le plus captivant ou le plus intéressant en 2019 ? Lynn nous dévoile le top 5 des articles les plus populaires.

Lynn Woerts
Cover Image

Quelques jours après le début de la nouvelle année, les projets et objectifs pour cette année commencent à prendre forme. Dans cette optique, il est temps de faire un bref bilan de l’année dernière. Par exemple, quels objectifs avons-nous atteints ? Quel article de blog a été le plus amusant, le plus utile, le plus captivant ou le plus intéressant pour vous ? D’ailleurs, soyez assurés que nous partagerons avec vous tout ce que nous savons sur les faibles débits, le débit massique et les débitmètres encore plus souvent au cours de la nouvelle année. D’après les données présentées dans les statistiques de 2019, nous avons compilé un top 5 des articles de blog les plus populaires. Les gagnants sont :

  1. Que faire en cas de vibrations lors de l’utilisation de débitmètres massiques Coriolis ?
  2. Savez-vous pourquoi les conditions de référence de débit massique sont importantes ?
  3. Compensation de la pression et de la température en temps réel pour optimiser la régulation du débit.
  4. Précision et répétabilité d’un débitmètre.
  5. La vanne de régulation de débit, l’accessoire le plus utilisé dans la régulation de débit

Top 5 des articles de blog les plus populaires en 2019 :

1. Que faire en cas de vibrations lors de l’utilisation de débitmètres massiques Coriolis ?

Vibration et débitmètre Coriolis

Instrument connu pour sa grande précision, le débitmètre massique Coriolis présente de nombreux avantages. Il n’est donc pas étonnant que cet article de blog ait atteint la première place. Dans les applications industrielles, toutes sortes de vibrations avec différentes amplitudes sont très courantes. Toutefois, la question est de savoir si ces vibrations ont une influence sur la précision de mesure d’un débitmètre massique Coriolis. Ferdinand Luimes, responsable de produits pour les technologies de débit de liquides, parle des avantages et des inconvénients de ces débitmètres et donne quelques conseils pratiques pour utiliser ces instruments.

2. Savez-vous pourquoi les conditions de référence pression/température des unités de mesure de débit massique sont importantes ?

Différence entre conditions standard et normales

Le monde de la mesure de débit applique des conditions de référence, qui peuvent être divisées en conditions standards et en conditions normales. Il existe également une distinction entre le style européen et le style américain. Chris King, Directeur général de Bronkhorst USA, nous éclaire sur cette construction apparemment compliquée dans son article de blog, en détaillant exactement les différences et en expliquant pourquoi ces conditions de référence sont importantes.

3. Compensation de la pression et de la température en temps réel pour optimiser la régulation du débit

Régulateur de débit insensible aux variations de pression

Cet article de blog a eu le plus grand succès en 2018 et est toujours dans le top 5 aujourd’hui, prouvant une fois de plus la pertinence de ce sujet. Il s’avère que divers facteurs externes peuvent avoir une influence sur la précision de mesure et la stabilité de régulation des régulateurs de débit massique. Vincent Hengeveld, responsable de produits pour le débit de gaz, explique le principe de la compensation de la pression et de la température en temps réel.

4. Justesse et répétabilité d’un débitmètre

Débitmètre-répétabilité et justesse de mesure

Choisir le bon débitmètre adapté à votre application est un élément essentiel pour la réussite du projet. En général, les deux caratéristiques clés sont la justesse et la répétabilité du débitmètre. Dans son article de blog, Chris King explique ce que ces deux paramètres signifient et pourquoi ils sont d’une importance fondamentale.

5. La vanne de régulation : l’outil le plus utilisé dans la régulation de débit

Vanne de régulation

Pour terminer la liste, un article de blog sur les vannes de régulation, probablement l’outil le plus utilisé dans la régulation de débit. Utilisée pour réguler un débit, une vanne de régulation fait varier la capacité de passage de débit. Savez-vous quelle vanne est la plus appropriée pour votre débitmètre ? Stefan von Kann, ingénieur expert en physique appliquée, présente un certain nombre de conseils et d’astuces sur les points les plus importants.

Les blogueurs invités en 2019

Nous tenons à remercier vivement nos blogueurs invités pour leurs études fascinantes et leurs histoires captivantes. Nous sommes ravis que vous ayez contribué au contenu de notre site en 2019.

  • Roland Snijder, physicien médical au centre Hospitalier de Haaglanden Medisch (Pays-Bas), a travaillé comme chercheur sur le projet de multi-perfusions au service de Technologie médicale et de physique clinique du Centre médical universitaire d’Utrecht. Dans son article de blog, il se concentre sur l’étude des causes physiques des erreurs de dosage dans les systèmes de multi-perfusions.
  • Jean-François Lamonier (Université de Lille) est un expert dans le traitement catalytique des composés organiques volatils. Dans cet article de blog, il explique comment son équipe utilise des débitmètres à cet effet.
  • Jornt Spit, chercheur au sein du groupe de recherche Radius à l’Université des Sciences Appliquées Thomas More en Belgique, a une formation en biochimie et en biotechnologie. Il travaille sur la biomasse renouvelable. Lisez son article de blog sur l’apport de CO2 contrôlé pour l’algoculture et sa précieuse contribution en tant que source alternative de carbone.
  • La Prof. Michaela Aufderheide (Cultex Technology GmbH) travaille depuis plus de 30 ans dans le domaine des méthodes analytiques alternatives à base de cellules vivantes, notamment sur la toxicologie par inhalation. La pollution croissante de l’air ambiant extérieur et du lieu de travail rend nécessaire de nouvelles méthodes d’essai. Lisez son article de blog : « La cigarette électronique – Bonne ou mauvaise ? »

Vous cherchez encore plus d’inspiration ? Tous les articles de blog sont accessibles sur notre site.

Au nom de toute l’équipe Bronkhorst, je vous souhaite une année 2020 saine, merveilleuse et innovante !

PS : Quels sujets d’articles aimeriez-vous que nous écrivions sur notre blog en 2020 ? Partagez avec nous vos idées !

Comment les débitmètres sont-ils utilisés dans le traitement catalytique des composés organiques volatils (COV) ?

Comment les débitmètres sont-ils utilisés dans le traitement catalytique des polluants atmosphériques émis par les sources fixes et mobiles?

Jean-François LAMONIER
Cover Image

Enseignant-chercheur à l’Université de Lille, Jean-François Lamonier s’intéresse au traitement catalytique des Composés Organiques Volatils (COV). Il est responsable de l’équipe de recherche « Remédiation et Matériaux Catalytiques » (REMCAT) de l’Unité de Catalyse et Chimie du Solide (UCCS), équipe spécialisée dans la dépollution catalytique de polluants atmosphériques issus de sources fixes (industries) et mobiles (véhicules). Dans cet article de blog, il nous présente ses activités de recherches et nous explique la fonction des instruments de mesure et de régulation de débit dans ses applications.

Les axes de recherches de l’équipe REMCAT

L'Equipe de recherche REMCAT (Remédiation et Matériaux Catalytiques) de l'Unité de Catalyse et Chimie du Solide (UCCS)

L’équipe REMCAT est composée de 6 enseignant-chercheurs et son activité est focalisée sur le post-traitement catalytique de polluants atmosphériques, principalement les oxydes d’azote (NOx et N2O) et les Composés Organiques Volatils (COV). Notre équipe intègre de nombreux savoir-faire en catalyse hétérogène : de la synthèse des catalyseurs à la caractérisation de nouvelles formulations catalytiques, l’évaluation de leurs performances au travers de tests catalytiques poussés, la caractérisation avancée des catalyseurs par spectroscopie infrarouge operando, la cinétique des réactions et la modélisation des réacteurs.

Traitement efficace de la pollution de l'air par la combinaison du plasma non thermique avec la catalyse

Cet ensemble de compétences en catalyse environnementale nous permet de développer des procédés originaux consistant à coupler différentes technologies pour un traitement de la pollution atmosphérique plus efficace, moins coûteux et plus soucieux de l’environnement. Dans ce cadre nous collaborons avec différents groupes de recherche nationaux et internationaux, et notamment avec le « Research Group Plasma Technology » de l’Université de Gand. Ce groupe de recherche est spécialisé dans le développement de réacteur plasma et nous apportons nos compétences en catalyse hétérogène pour développer ensemble des procédés qui couplent le plasma non thermique avec la catalyse. Ce travail de recherche se réalise au sein d’un Laboratoire Associé International « Plasma-Catalyse » que nous avons récemment créé et le projet Européen INTERREG V « DepollutAir » qui finance actuellement notre recherche.

L'utilisation d'une fonctionnalité d'adsorption dans le procédé de transformation par plasma - Catalyse

Les procédés classiques par plasma-catalyse pour l’élimination des Composés Organiques Volatils (COV), présents dans les effluents gazeux industriels, nécessitent un apport énergétique constant. Notre démarche consiste à intégrer une fonctionnalité d’adsorption préalable du polluant dans le procédé de transformation par plasma-catalyse. Ceci permet un fonctionnement en mode séquentiel du plasma pour l’élimination de Composés Organiques Volatils et la régénération de l’adsorbant et donc une économie d’énergie substantielle. Notre équipe apporte ses compétences dans l’élaboration de nouveaux matériaux adsorbant/catalyseur et dans la caractérisation avancée de ces matériaux.

Les débitmètres et régulateurs de débit dans les applications de traitement catalytique des Composés Organiques Volatils (COV) Dans le cadre de nos recherches, nous devons générer des mélanges de COV pour simuler les effluents gazeux industriels. Comme ces effluents gazeux diffèrent selon le type d’industrie et que nous devons être le plus représentatif possible des réalités industrielles, il faut être en mesure de générer un flux gazeux avec des teneurs en COV très variables et avec des COV de nature très différente tels que le formaldéhyde, le toluène, le chlorobenzène, le trichloroéthylène et le butanol.

Schéma dilution

Système de dilution avec un débitmètre Coriolis

Pour cela, nous utilisons un système de dilution fourni par Bronkhorst qui intègre un débitmètre Coriolis, un régulateur de pression (déverseur) et plusieurs régulateurs de débit massique. Nous avions besoin d’un équipement permettant d’atteindre des faibles concentrations de COV car les normes de plus en plus restrictives conduisent à une diminution de la teneur des COV à l’émission dans l’atmosphère. Il fallait également que le système soit le plus flexible possible pour s’adapter à la fois à la nature des divers liquides injectés dans le système et transformés en gaz et aux teneurs en COV dans l’effluent gazeux pouvant varier de 10 à 1000 ppmv.

Formulations catalytiques

L'humidité relative des effluents gazeux est un paramètre important à prendre en considération pour le développement des formulations catalytiques. En effet la présence de vapeur d’eau peut avoir un effet positif ou négatif sur la performance du procédé catalytique. Par conséquent, le système de génération de gaz devait aussi permettre de générer une humidité relative variable dans le mélange gazeux .

Solution de dilution Bronkhorst

De plus pour proposer une formulation catalytique adaptée à l’industriel, il faut non seulement vérifier que le catalyseur soit bien actif et sélectif (c’est-à-dire que le catalyseur doit donner les produits désirés) mais également qu’il soit stable dans le temps. En effet, il est difficile d’imaginer un catalyseur qui ne fonctionne qu’une seule journée et devoir le remplacer le lendemain. C’est pour cela que nous avons besoin de reproduire un effluent gazeux industriel constant sur plusieurs jours. Lorsqu’un test catalytique est effectué sur une journée, nous pouvons envisager d’utiliser un bulleur. En revanche, quand nous avons besoin de vérifier la stabilité des catalyseurs dans le temps, nous effectuons des tests de longue durée pour voir si le catalyseur est capable de garder son activité sur plusieurs jours. Ce serait plus compliqué de faire des tests dans la durée avec un système classique alors que le système de Bronkhorst permet de générer un flux constant, continu et sans à-coups de COV dans l’air. C’est un plus indéniable pour valider notre process.

Système DilLab

Retrouvez plus d’informations sur les travaux de recherches de Jean-François Lamonier et de l’équipe REMCAT de l’Unité de Catalyse et Chimie du Solide : activités de recherches

Université de Lille

Pour être informé de nos nouveautés et nos derniers articles de blog, pensez à la newsletter.